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0. Why Bother With Spatio-temporal Methods?

• The rise of big-data has made spatio-temporal datasets (data indexed in both space
and time) and tools readily available for analysis.

• Time series analysis models temporally-varying phenomenon. Spatial analysis models
spatially-varying phenomenon. What if the topic of interest is dependent on both
space and time?

• Time series models explain patterns and behavior over time, while spatial models
explain patterns across space. When focusing on time or space alone, the influence of
the dimension left out often remains unaccounted for, appearing as unexplained
variance in the model’s standard errors and residuals!

• Weaker explanation and prediction power for phenomenon of interest (poor standard
errors, unexplained dependence of data values)

• In the pursuit of better performing models, can use regressors that vary with
space/time/both, i.e more freedom in selecting model regressors.1

1Readers are encouraged to look up parameter inference, a statistical exercise that reveals whether
some regressors are actually important in the model for explanation.
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1. Know Thy Data
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Introduction to the Groundwater Level Dataset

• Sourced from India Water Resource Information Systems (India-WRIS), created by
the Ministry of Water Resources, India.

• Contains the ground water level measured at 18,849 measuring stations situated all
over India over the period May 2023-May 2024.

• Came with 4,308,184 observations, with a host of its own issues (irregular
observation frequency across stations, multiple observations at the same
spatio-temporal location, nonsense observations- what does discovering groundwater
at a depth of -3583.09m mean? How about +33194.93m? 2)

2As of 2020, the peak of Mount Everest is at the height +8848m.
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Filtering and Balanced Panels

• We first applied a filter, restricting ourselves to observations that fell in the range
(-10, -0.01)m.

• Removing positive values got rid of around 300k observations. Applying the lower
bound of -10 led to halving the dataset (left with 2,082,664 observations!)

• A small allusion to how significant the exploratory data analysis step can be.

• We then found the stations that made observations in every month in the period
(May 2023-Apr 2024), averaged their observations in each month, and successfully
prepared a balanced panel.

• 645 stations followed the required pattern.
• Final size of balanced panel = 645 * 12 = 7740 observations.
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Region of Interest
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2. Spatio-temporal Prediction
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Spatio-Temporal Prediction Problem

• To start with, consider the prediction (i.e., “interpolation”) of groundwater level in
October 2023 at Delhi.

• Prediction approaches:
• We somehow just combine the nearest observations in space, a.k.a. Tobler’s Law
• We should consider nearby observations in both space and time.

• Types of spatio-temporal predictors:
• Smoothing predictor: If we have data before and after October 2023 Our problem requires this

type of predictor!

• Filtering predictor: If we only have data before October 2023
• Forecasting predictor: If we have to predict at any location, at any time after which

data is not available
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Deterministic Prediction: Inverse Distance Weighting

• Perhaps the simplest approach: follow Tobler’s law and give more weight to the
nearest observations in space and time

• Inverse distance weighting (IDW) for spatio-temporal data:

{Z (s11; t1),Z (s21; t1), . . . ,Z (sm11; t1), . . . ,Z (s1T ; tT ), . . . ,Z (smTT ; tT )}

where for each time tj , we have mj observations (12 timestamps, 645 locations)
• IDW predictor at location s0 and time t0 (assuming t1 ≤ t0 ≤ tT ):

Ẑ (s0; t0) =
T∑
j=1

mj∑
i=1

wij(s0; t0)Z (sij ; tj)

• Weights normalized to sum to 1:

wij(s0; t0) ≡
w̃ij(s0; t0)∑T

k=1

∑mk
ℓ=1 w̃ℓk(s0; t0)
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Inverse Distance Weighting (Continued)

• The unnormalized weights are proportional to the inverse of distance raised to power
α:

w̃ij(s0; t0) ≡
1

d((sij ; tj), (s0; t0))α

• Where:
• d((sij ; tj), (s0; t0)) is the ”distance” between the spatio-temporal locations
• The power coefficient α > 0 controls the amount of smoothing (often α = 2)

• Key properties:
• IDW is a weighted average of data points, giving closest locations more weight (taking

the inverse of the distance encodes this idea in a mathematical manner)
• Formula gives an exact interpolator: If prediction location matches a data location,

prediction equals the data value
• For a smoothing predictor: Use weights proportional to 1

(d(·,·)+c)α where c > 0
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IDW Results (Euclidean Distance); α > 1

• As α increases, distance increases, inverse distance decreases, and so does w̃ij accordingly. Nearer
observations get a higher weight.
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IDW Results (Euclidean Distance); 0 < α ≤ 1

• As α decreases, inverse distance increases, and so does w̃ij . The algorithm gives an almost equal
weight to all observations for α → 0. Note the lack of range in predicted values!
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Kernel-Based Prediction

• IDW is a type of spatio-temporal kernel predictor

• General formulation of unnormalised weights using kernel function:

w̃ij(s0; t0) = k((sij ; tj), (s0; t0); θ)

• Kernel function quantifies similarity between two locations:
• Depends on distance between (sij ; tj) and (s0; t0)
• Controlled by bandwidth parameter θ
• Larger bandwidth averages more observations (smoother predictions)

• Example: Gaussian radial basis kernel

k((sij ; tj), (s0; t0); θ) ≡ exp

(
−1

θ
d((sij ; tj), (s0; t0))

2

)

θ ∈ (0,∞)
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Gaussian Kernel Prediction (Euclidean Distance); θ > 1

• Note how the predictions become ’smoother’ as the value of θ increases: higher values increase the
”neighborhood” of points that contribute significantly to each prediction.
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Gaussian Kernel Prediction (Euclidean Distance); 0 < θ ≤ 1

• The model isn’t making predictions in the gray areas! The kernel becomes extremely localized - it only considers very nearby points when making

predictions. If the prediction points are too far from any observation in the dataset, the weights become essentially zero, resulting in no prediction.
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Candidate Distance Functions (other than Euclidean)

• Weighted Combination of Spatial and Temporal Distance

d(p,q) = ws · dspatial(p,q) + wt · dtemporal(p,q)

where ws and wt are weighting parameters for spatial and temporal components
respectively and ws + wt = 1

• Space-time Cube Distance

dST(p,q) =

√(
xp − xq

sx

)2

+

(
yp − yq

sy

)2

+

(
tp − tq

st

)2

where sx , sy , and st are scaling factors for each dimension, sx and sy normalize
spatial units (e.g., meters, kilometers), st normalizes temporal units (e.g., seconds,
days) to make them comparable with spatial units
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Limitations of Deterministic Methods

• Do not explicitly account for measurement uncertainty
• Non-exact interpolators do implicitly smooth observation errors, but there is no

mechanism to incorporate explicit knowledge of measurement error.

• Do not provide model-based estimates of prediction uncertainty. The IDW algorithm gave you a

predicted value for a spatio-temporal location. How good is the prediction, really? What’s the confidence interval?

• Use cross-validation to find optimal parameters to IDW algorithms.
• Use leave-one-out cross-validation (LOOCV) MSPE score
• Different spatio-temporal kernel functions can potentially outperform IDW for a given

dataset
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3. Regression (Trend-Surface)
Estimation
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Regression (Trend-Surface) Estimation

• Alternative to deterministic predictors: use a basic statistical regression model
• Key advantages:

• Exceptionally simple to implement in almost any software package
• Explicitly accounts for model error (usually assumed independent)
• Provides a model-based prediction-error variance

• Consider observations at discrete times {tj : j = 1, . . . ,T} for all spatial locations
{si : i = 1, . . . ,m} Reminder: T = 12,m = 645!

• Basic model form:

Z (si ; tj) = β0 + β1X1(si ; tj) + . . .+ βpXp(si ; tj) + ϵ(si ; tj)

where ϵ(si ; tj) ∼ indep. N(0, σ2
ϵ )
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Covariates in Trend-Surface Models

• Covariates Xk(si ; tj) can represent various types of effects:
• Spatially varying, temporally invariant features

• Example: elevation, soil type

• Time trends that are spatially invariant
• Example: festivals, agricultural seasons

• Spatially and temporally varying variables
• Example: humidity, precipitation

• Can also incorporate spatio-temporal ”basis functions” to reconstruct the observed
data

• Assumes spatio-temporal dependence can be accounted for by covariate terms
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Fitting Regression Models via OLS

• The regression model can be fitted via ordinary least squares (OLS)
• OLS estimates parameters β0, β1, . . . , βp by minimizing the residual sum of squares:

RSS =
T∑
j=1

m∑
i=1

(Z (si ; tj)− Ẑ (si ; tj))
2

• Estimated regression equation:

Ẑ (s; t) = β̂0 + β̂1X1(s; t) + . . .+ β̂pXp(s; t)

• Also obtain an estimate of error variance: σ̂2
e = RSS

(mT−p−1)
• Benefits:

• Predictions for mean response at any location with covariates
• Model-based uncertainty estimates for predictions

• However, our regression equation does not explicitly account for measurement errors
in the responses, and thus the variation due to measure error is confounded with the
variation due to lack of fit in the residual variance σ2

e .
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Choosing an OLS Model

• OLS is always the starting point for regression tasks due to its desirable statistical
features under the OLS model assumptions (BLUE- best linear unbiased estimator)

• Spatio-temporal data highly likely to violate the assumptions of the OLS model, in
which case we then look for more sophisticated estimators.
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Choosing an OLS Model

• We will perform an OLS regression using the following equation using R:

groundwater(si ; tj) = β0 + β1latitude(si ; tj) + β2longitude(si ; tj) + β3time(si ; tj)

+ β4lat time(si ; tj) + β5long time(si ; tj) + β6lat long(si ; tj)

+ β7Dmonsoon(si ; tj) + β8Dindo gangetic(si ; tj)

+ β9Dnorth east(si ; tj) + β10Ddeccan(si ; tj) + ϵ(si ; tj)

• Where:
• lat time denotes the latitude-time interaction term
• long time denotes the longitude-time interaction term
• lat long denotes the latitude-longitude interaction term
• Dmonsoon = 1 if the observation time falls in the range June-September, 0 otherwise.
• Dindo gangetic = 1 if the location falls in the Indo-Gangetic region, 0 otherwise
• Dnorth east = 1 if the location falls in North-East India, 0 otherwise
• Ddeccan = 1 if the location falls in the Deccan plateau, 0 otherwise
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OLS Regression Results

OLS Model Beta Values, Standard Errors and Significance Level

DV: reading

y 0.380∗

(0.224)
x 0.082

(0.071)
time −0.456∗∗∗

(0.142)
lat time 0.001

(0.001)
long time 0.007∗∗∗

(0.002)
lat long −0.006∗

(0.003)

DV: reading

monsoon 0.029
(0.056)

indo gangetic 0.347∗∗∗

(0.110)
north east 1.830∗∗∗

(0.236)
deccan 0.360∗∗∗

(0.065)
Constant −10.890∗∗

(5.547)

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Inference on OLS Model Parameters

Spatial Covariates:
• Significant regional variations: North-East region shows highest effect (1.830∗∗∗).
Indo-Gangetic plain (0.347∗∗∗) and Deccan plateau (0.360∗∗∗) show similar
magnitudes: readings in these areas are expected to be higher.

• Latitude-longitude interaction slightly negative (−0.006∗): effect of longitude
becomes more negative as latitude increases, is moderately significant

Temporal Covariates:
• Time has significant negative main effect (−0.456∗∗∗), showing that readings are
decreasing over time.

• Monsoon has a small positive coefficient, suggesting slightly higher readings during
monsoon periods. However, this effect is not statistically significant.

Spatio-temporal Covariates
• Longitude-time interaction positive (0.007∗∗∗), suggests the effect of longitude

becomes more positive over time. Highly significant interaction.
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Inference on OLS Model Statistics

Table: OLS Regression Model Statistics

Observations 7,740
R2 0.043
Adjusted R2 0.042
Residual Std. Error 2.279 (df = 7729)
F Statistic 35.071∗∗∗ (df = 10; 7729)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• Highly significant F-statistic indicates that the model has explanatory power.

• However, a poor R2 statistic tells us that the model explains only 4.3% of the total
variance in groundwater level - limited predictive power!
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Alternate OLS Models

• According to intuition, Dmonsoon may have had a significant positive impact on the
groundwater level in an area. An alternate OLS model uses this dummy variable as
the only temporal covariate:

groundwater(si ; tj) = β0 + β1latitude(si ; tj) + β2longitude(si ; tj)

+ β3lat time(si ; tj) + β4long time(si ; tj) + β5lat long(si ; tj)

+ β6Dmonsoon(si ; tj) + β7Dindo gangetic(si ; tj)

+ β8Dnorth east(si ; tj) + β9Ddeccan(si ; tj) + ϵ(si ; tj)
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Alternate OLS Regression Results

OLS Model Beta Values, Standard Errors and Significance Level

DV: reading

y 0.383∗

(0.224)
x 0.118∗

(0.070)
lat time 0.0002

(0.001)
long time 0.001∗∗∗

(0.0003)
lat long −0.006∗

(0.003)

DV: reading

monsoon 0.027
(0.056)

indo gangetic 0.347∗∗∗

(0.110)
north east 1.830∗∗∗

(0.236)
deccan 0.360∗∗∗

(0.065)
Constant −13.852∗∗

(5.473)

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

• The Dmonsoon variable remains statistically insignificant! Longitude variable x
becomes moderately significant in the new model, other inferences remain intact.
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Inference on Alternate OLS Model Statistics

Table: OLS Regression Model Statistics

Observations 7,740
R2 0.042
Adjusted R2 0.041
Residual Std. Error 2.281 (df = 7730)
F Statistic 37.770∗∗∗ (df = 9; 7730)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• Highly significant F-statistic remains, also higher in magnitude compared to previous
model.

• R2 and residual standard errors deteriorate in this model!
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4. Model Diagnostics: Dependent
Errors
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Model Diagnostics: Dependent Errors

• When we first learn how to do regression modeling in statistics, we gain an
appreciation for the importance of model diagnostics to verify the assumptions of the
model

• Standard regression diagnostics examine:
• Presence of outliers
• Influential observations
• Non-constant error variance
• Non-normality of errors
• Dependence in the errors

• It is particularly important to consider the possibility of dependent errors in the case
where data is indexed in space or time, or both. Our original motivation behind spatio-temporal models!
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OLS Residuals - Plot over Time
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OLS Residuals - Plot over Space
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Reading the Residual Plots

• Plot over time:
• The two locations were chosen at random from the set of locations. For one location

the model underestimates groundwater level, for the other location groundwater level is
overestimated3.

• Note the trend present in the residuals.

• Plot over space:
• One can visualise some extent of spatial dependence in the plots. We can try to use

more sophisticated tools to confirm spatial dependence, though.

3
We take some time here to consider the sign of the residuals: a positive residual means that groundwater was predicted to be located deeper than

the observed height, and a negative residual means that groundwater was predicted to be located at a height above the observed value!
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Intrinsic Stationarity: The Variogram

• Consider for a moment that we are conducting a spatial analysis of a random process
{Z (s) : s ∈ D} where D is the index set of locations s, called the domain.

• If we decide4that the random process is intrinsically stationary, then the following
mathematical statements hold:

E (Z (s + h)− Z (s)) = 0 (1)

var(Z (s + h)− Z (s)) = 2γ(h) (2)

• The quantity 2γ(h) is called the spatial variogram, defined for a spatial lag h, a
separation vector. The quantity γ(h) is called the semivariogram.

• Intrinsic stationarity comes with the assumptions that the population mean is
spatially invariant (1) and that the variance of the difference between any two
observations depends only on the spatial lag h (2).

4Stationarity is a decision taken by a statistician about the random process, not a hypothesis that can be tested!
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Empirical Spatial Variogram

• Let us consider that our groundwater data to be temporally invariant. We can
calculate the empirical variogram for our data using the following estimator proposed
by Matheron (1962):

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z (si )− Z (sj))
2

N(h) ≡ {(i , j) : si − sj = h}

• A variogram is fundamentally telling you how similar or different locations are as a
function of how far apart they are.

• Low variogram values imply that locations are similar (highly correlated), while high
variogram values imply that locations are dissimilar (weakly correlated).
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Empirical Spatial Semivariogram (Groundwater Data)
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Temporal Variograms

• Time series analysis generally uses tools like the autocovariance function and the
autocorrelation function.

• Calculating the temporal variogram can also help us see how values at a fixed
location vary over increments in time (instead of increments in distance.)

2γ(τ) = var(Z (t + τ)− Z (t))

2γ̂(τ) =
1

|N(τ)|
∑
N(τ)

(Z (ti )− Z (ti + τ))2

N(τ) is the number of pairs of observations separated by a temporal lag τ .
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Empirical Temporal Semivariogram (Groundwater Data)
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Reading Variogram Plots

• If a model captures the spatial/temporal/spatiotemporal patterns present in the
data, one can expect the variogram of the data to differ from the variogram plotted
from the model’s resiudals.

• The spatial semivariograms show that the semivariance stabilises at a distance,
however both the data and the residual semivariogram show the same pattern.

• Possible spatial structure of data might not have been fully captured by our OLS model!
• Recall that the definition for a temporal variogram includes a temporal lag τ . The

plot will help us answer questions about the similarity between values that are τ
months apart.

• Our plot suggests high correlation of groundwater levels between values with a time lag
of 8 months. For example, values in May 2023 and May 2023 + 8 months (i.e. Jan
2024) are highly correlated. The lowest correlation can be observed with values having
a time lag τ = {2, 10}.

• The residual variogram is flatter than the original data’s variogram, however both show
the same seasonal trends. This tells us that our simple model did not pick up on the
seasonal trends present in the data!
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The Spatio-temporal Covariogram

• Our detour into spatial and temporal variograms, as well the conditions of
stationarity allows us to now construct an exploratory tool to analyse for dependence
called the spatio-temporal variogram, given as

2γz(h; τ) = var(Z (s+ h; t + τ)− Z (s; t))

where h is a spatial lag and τ is a temporal lag.

• From an exploratory perspective, we can calculate the empirical spatio-temporal
covariogram from both the original data and the residuals for the purpose of
comparison:

γ̂z(h; τ) =
1

|Ns(h)||Nt(τ)|
∑

si ,sk∈Ns(h)

∑
tj ,tℓ∈Nt(τ)

(Z (si ; tj)− Z (sk ; tℓ))
2
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Empirical Spatio-Temporal Semivariogram Comparison

The residuals have smaller semivariance values but about the same visualisation as the
original data, which tells us that the model did not capture the spatio-temporal
correlation patterns present in the data.
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Statistical Tests for Dependence

• Visualisation and exploratory techniques are a great starting point for identifying
patterns and trends. One could claim dependence in the residuals beyond a
reasonable doubt. A picture is worth a thousand words.

• However, we still require some mathematical tools to prove the existence of
dependence beyond all doubt. For this purpose, we employ statistical tests.

• Tests for temporal dependence:
• Durbin-Watson test

• Tests for spatial dependence:
• Moran’s I test for areal regions

• Tests for spatio-temporal dependence:
• Spatio-temporal Analog to Durbin-Watson
• ”Space-time index” (STI) approach (Henebry, 1995)
• Extension of Moran’s I statistic for spatio-temporal data
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Durbin-Watson Test for Autocorrelation

• The Durbin-Watson (DW) test detects temporal autocorrelation in regression
residuals:

DW =

∑n
i=2(ei − ei−1)

2∑n
i=1 e

2
i

,DW ∈ (0, 4)

Values < 2 suggest positive autocorrelation (common in time series), while values
> 2 suggest negative autocorrelation. Values close to 2 suggest no autocorrelation.

• Statistical inference:
• Null hypothesis (H0): No autocorrelation in residuals
• Alternative hypothesis (HA): Residuals exhibit autocorrelation

• Bonferroni correction for multiple tests:
• Adjusted significance level: αcorrected = α/m (for m tests)
• For our groundwater level data: With 645 spatial locations, use

α = 0.8612/645 = 0.0013, implying strong positive autocorrelation.
• Drawback: Conservative for spatial data due to possible presence of spatial

autocorrelation
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Moran’s I Test for Spatial Autocorrelation

• Moran’s I is a key statistic for measuring spatial5autocorrelation:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2
, I ∈ (−1, 1)

Values closer to -1 imply negative autocorrelation, values closer to +1 imply positive
autocorrelation.

• Statistical inference:
• Null hypothesis (H0): No spatial autocorrelation (spatial randomness)
• Z-scores and p-values determine significance of the observed pattern, with small

p-values (e.g., p < 0.05) indicating significant spatial structure
• For our groundwater level data: Global Moran’s I = 0.7666371, max p = 1.236e-03

provides strong evidence to reject H0

5For spatio-temporal autocorrelation, the distance between two spatio-temporal locations can be
encoded using any candidate distance function (with both space and time parameters)
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Limitations of Linear Models

• It is very common, when studying environmental phenomena, that a linear model
with covariates will not explain all observed spatio-temporal variability

• Fitting such models frequently results in residuals that are spatially and temporally
correlated

• Not surprising since environmental processes are more complex than can be described
by simple geographical and temporal trend terms

• Evidence of dependence in residuals:
• Temporal correlation: residuals close in time tend to be more similar than those far apart
• Spatial correlation: residuals close in space tend to be more similar than those far apart
• Statistical tests (Durbin-Watson, Moran’s I ) confirm these patterns
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GLS and Associated Challenges

• Once diagnostics suggest spatio-temporal dependence in errors, what can we do?
• Generalized Least Squares (GLS) explicitly accounts for dependence in errors

• Relaxes the assumption of independence in the errors
• Allows e(si ; tj) and e(sℓ; tk) to be correlated
• Error vector e ≡ (e(s1; t1), . . . , e(sm; tT ))′ has distribution e ∼ N(0,Ce) where Ce is a

spatio-temporal covariance matrix
• Major challenge: Do we know the covariance matrix in advance?

• Typically, no
• For prediction at locations without data:

• Need to know error dependence between any two locations in time and space
• Not just at observation points
• Requires a model for the covariance structure

• Additional complications:
• Computational challenges with large datasets
• Need to estimate covariance parameters
• Model misspecification risks
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The End6

6of the presentation. Your next step lies in the references!
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